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Abstract. A given question can be defined in terms of the set of statements or assertions that
answer it.  Application of the logic of inference to this set of assertions allows one to derive the
logic of inquiry among questions.  There are interesting symmetries between the logics of
inference and inquiry; where probability describes the degree to which a premise implies an
assertion, there exists an analogous quantity that describes the bearing or relevance that a
question has on an outstanding issue.  These have been extended to suggest that the logic of
inquiry results in functional relationships analogous to, although more general than, those found
in information theory.

Employing lattice theory, I examine in greater detail the structure of the space of assertions
and questions demonstrating that the symmetries between the logical relations in each of the
spaces derive directly from the lattice structure.  Furthermore, I show that while symmetries
between the spaces exist, the two lattices are not isomorphic.  The lattice of assertions is

described by a Boolean lattice N2 , whereas the lattice of real questions is shown to be a

sublattice of the free distributive lattice 
N

N 22FD =)( .  Thus there does not exist a one-to-one

mapping of assertions to questions, there is no reflection symmetry between the two spaces, and
questions in general do not possess unique complements.  Last, with these lattice structures in
mind, I discuss the relationship between probability, relevance and entropy.

“Man has made some machines that can answer questions provided the facts
are profusely stored in them, but we will never be able to make a machine that
will ask questions. The ability to ask the right question is more than half the
battle of finding the answer.”

- Thomas J. Watson (1874-1956)

INTRODUCTION

It was demonstrated by Richard T. Cox (1946, 1961) that probability theory represents
a generalization of Boolean implication to a degree of implication represented by a
real number.  This insight has placed probability theory on solid ground as a calculus
for conducting inductive inference.  While at this stage this work is undoubtedly his
greatest contribution, his ultimate paper, which takes steps to derive the logic of
questions in terms of the set of assertions that answer them, may prove yet to be the
most revolutionary.  While much work has been done extending and applying Cox's
results (Fry 1995, 1998, 2000; Fry & Sova 1998; Bierbaum & Fry 2002; Knuth 2001,
2002), the structure of the space of questions remains poorly understood.  In this paper



I employ lattice theory to describe the structure of the space of assertions and
demonstrate how logical implication on the Boolean lattice provides the framework on
which the calculus of inductive inference is constructed.  I then introduce questions by
following Cox (1979) and defining a question in terms of the set of assertions that can
answer it.  The lattice structure of questions is then explored and the calculus for
manipulating the relevance of a question to an unresolved issue is examined.
The first section is devoted to the formalism behind the concepts of partially ordered
sets and lattices.  The second section deals with the logic of assertions and introduces
Boolean lattices.  In the third section, I introduce the definition of a question and
introduce the concept of an ideal question.  From the set of ideal questions I construct
the entire question lattice identifying it as a free distributive lattice.  Assuredly real
questions are then shown to comprise a sublattice of the entire lattice of questions.  In
the last section I discuss the relationship between probability, relevance, and entropy
in the context of the lattice structure of these spaces.

FORMALISM

Partially Ordered Sets

In this section I begin with the concept of a partially ordered set, called a poset, which
is defined as a set with a binary ordering relation denoted by ba £ , which satisfies for
all a, b, c (Birkhoff 1967):

P1. For all a, aa £ . (Reflexive)
P2. If ba £  and ab £ , then ba = (Antisymmetry)
P3. If ba £  and cb £ , then ca £ (Transitivity)

Alternatively one can write ba £  as ab ≥  and read “b contains a” or “b includes a”.
If ba £  and ba ≠  one can write ba <  and read “a is less than b” or “a is properly
contained in b”.  Furthermore, if ba < , but bxa <<  is not true for any x in the poset
P, then we say that “b covers a”, written ba p .  In this case b can be considered an
immediate superior to a in a hierarchy.  The set of natural numbers {1, 2, 3, 4, 5}
along with the binary relation “less than or equal to” £  is an example of a poset.  In
this poset, the number 3 covers the number 2 as 32 < , but there is no number x in the
set where 32 << x .  This covering relation is useful in constructing diagrams to
visualize the structure imposed on these sets by the binary relation.

To demonstrate the construction of these diagrams, consider the poset defined by
the powerset of },,{ cba  with the binary relation Õ  read “is a subset of”,

{ }( )Õ∅= ,},,{},,{},,{},,{},{},{},{},{ cbacacbbacbaP  where the powerset
)(X℘  of a set X is the set of all possible subsets of X.  As an example, it is true

that },,{}{ cbaa Õ , read “ }{a  is included in },,{ cba ”.  Furthermore, it is true that
},,{}{ cbaa Ã , read “ }{a  is properly contained in },,{ cba ” as },,{}{ cbaa Õ , but



},,{}{ cbaa ≠ .  However, },,{ cba  does not cover }{a  as },,{},{}{ cbabaa ÃÃ .
We can construct a diagram (Figure 1) by choosing two elements x and y from the set,
and writing y above x when yx Ã .  In addition, we connect two elements x and y with
a line when y covers x, yx p .

Posets also possess a duality in the sense that the converse of any partial ordering
is itself a partial ordering (Birkhoff 1967).  This is known as the duality principle and
can be understood by changing the ordering relation “is included in” to “includes”
which equates graphically to flipping the poset diagram upside-down.

With these examples of posets in mind, I must briefly describe a few more
concepts.  If one considers a subset X of a poset P, we can talk about an element Pa Œ
that contains every element Xx Œ ; such an element is called an upper bound of the
subset X.  The least upper bound, or l.u.b., is an element in P, which is an upper bound
of X and is contained in every other upper bound of X.  Thus the l.u.b. can be thought
of as the immediate successor to the subset X as one moves up the hierarchy.  Dually
we can define the greatest lower bound, or g.l.b.  The least element of a subset X is an
element Xa Œ  such that xa £  for all Xx Œ .  The greatest element is defined dually.

FIGURE 1.  The poset { }( )Õ∅= ,},,{},,{},,{},,{},{},{},{},{ cbacacbbacbaP  results in the

diagram shown here.  The binary relation Õ  dictates the height of an element in the diagram.  The
concept of covering allows us to draw lines between a pair of elements signifying that the higher
element in the pair is an immediate successor in the hierarchy.  Note that {a} is covered by two
elements.  These diagrams nicely illustrate the structural properties of the poset.  The element },,{ cba

is the greatest element of P and }{∅  is the least element of P.

Lattices

The next important concept is the lattice.  A lattice is a poset P where every pair of
elements x and y has a least upper bound called the join, denoted as yx ⁄ , and a
greatest lower bound called the meet, denoted by yx Ÿ .  The meet and join obey the
following relations (Birkhoff 1967):

L1. xxxxxx =⁄=Ÿ , (Idempotent)
L2. xyyxxyyx ⁄=⁄Ÿ=Ÿ , (Commutative)
L3. zyxzyxzyxzyx ⁄⁄=⁄⁄ŸŸ=ŸŸ )()(,)()( (Associative)
L4. xyxxyxx =Ÿ⁄=⁄Ÿ )()( (Absorption)

},,{ cba

},{ ba

}{a }{b }{c

}{∅

},{ cb},{ ca



In addition, for elements x and y that satisfy yx £  their meet and join satisfy the
consistency relations

C1. xyx =Ÿ (x is the greatest lower bound of x and y)
C2. yyx =⁄ (y is the least upper bound of x and y).

The relations L1-4 above come in pairs related by the duality principle; as they hold
equally for a lattice L and its dual lattice (denoted ∂L ), which is obtained by reversing
the ordering relation thus exchanging upper bounds for lower bounds and hence
exchanging joins and meets.  Note that the meet and join are generally defined for all
lattices satisfying the definition of a lattice; even though the notation is the same they
should not be confused with the logical conjunction and disjunction, which refer to a
specific ordering relation.  I will get to how they are related and we will see that lattice
theory provides a general framework that clears up some mysteries surrounding the
space of assertions and the space of questions.

THE LOGIC OF ASSERTIONS

Boolean Lattices

I introduce the concept of a Boolean lattice, which possesses structure in addition to
L1-4.  A Boolean lattice is a distributive lattice satisfying the following identities for
all x, y, z:

B1.
)()()(

)()()(

zxyxzyx

zxyxzyx

⁄Ÿ⁄=Ÿ⁄

Ÿ⁄Ÿ=⁄Ÿ
(Distributive)

Again the two identities are related by the duality principle.  Last the Boolean lattice is
a complemented lattice, such that each element x has one and only one complement

x~  that satisfies (Birkhoff 1967):

B2. IxxOxx =⁄=Ÿ ~~
B3. xx =)(~~
B4. yxyxyxyx ~~)(~~~)(~ Ÿ=⁄⁄=Ÿ

where O and I are the least and greatest elements, respectively, of the lattice.  Thus a
Boolean lattice is a complemented distributive lattice.

We now consider a specific application where the elements a  and b  are logical
assertions and the ordering relation is yxyx Æ≡£ , read “x implies y”.  The logical
operations of conjunction and disjunction can be used to generate a set of four logical
statements, which with the binary relation “implies” forms a Boolean lattice displayed



in Figure 2.  It can be shown that the meet of a and b, written ba Ÿ , is identified with
the logical conjunction of a and b, and the join of a and b, written ba ⁄ , is identified
with the logical disjunction of a and b.  I will require that the lattice be complemented,
which means that the complement of a must be b, ba =~ , and vice versa.  If we
require the assertions to be exhaustive, then either a or b are true, and their join, the
disjunction ba ⁄ , must always by be true.  By B2 ba ⁄  must be the greatest element
and is thus I, which in logic is called the truism, as it is always true.  Similarly their
meet, the conjunction ba Ÿ , is the least element O and when a and b are mutually
exclusive O must always be false, earning it the name the absurdity.

FIGURE 2.  The lattice diagram formed from two assertions a  and b .  In this diagram I chose to use
arrows to emphasize the direction of implication among the assertions in the lattice.

The symbol for the truism I  mirrors the I  used by Jaynes to symbolize “one’s
prior information” (Jaynes, unpublished).  In fact, in an inference problem, if one
believes that one of a set of assertions is true then one’s prior knowledge consists, in
part, of the fact that the disjunction of the entire set of assertions is true.  Thus the
notation of lattice theory agrees quite nicely with the notation used by Jaynes.

Deductive inference refers to the process where one knows that an assertion a  is
true, and deduces that any assertion reached by a chain of arrows must also be true.  If
for two assertions x and y elements of a lattice L, x is included in y, yx £ , we say that
x implies y, denoted yx Æ .

If a set of assertions a  used to generate the lattice is a mutually exclusive set then
all possible conjunctions of these assertions are equal to the absurdity,

yxyxallforOyx ≠Œ=Ÿ :, a .

These elements that cover O  are called atoms or points.  As all other elements are
formed from joins of these atoms, they are called generators or generating elements
and the lattice is called an atomic lattice.  The total number of assertions in the atomic
Boolean lattice is N2 , where N  is the number of atoms.  These Boolean lattices can
be named according to the number of atoms, N2 .  The first three atomic Boolean
lattices are shown in Figure 3.  In these figures one can visualize the curious fact of
logic: the absurdity O  implies everything.  Also, it is instructive to identify the
complements of the generators (eg. in 22 , ba =~ , and in 32 , cba ⁄=~ ).  These
lattices are self-dual as the same lattice structure results by reversing the ordering
relation (turning the diagram upside-down) and interchanging meets and joins ( yx ⁄
and yx Ÿ ).

a b

ba Ÿ

ba ⁄



FIGURE 3.  Here are the first three atomic Boolean lattices where the upward pointing arrows denoting

the property “is included in” or “implies” have been omitted.  Left: The lattice 12  where aI = .

Center: The lattice 22  generated from two assertions (same as Fig. 2) where baO Ÿ=  and baI ⁄= .

Right:  The lattice 32  generated from three atomic assertions where the conjunction of all three
assertions is represented by the absurdity O , and the disjunction of all three assertions is represented by
the truism I .

For fun we could consider creating another lattice NL  where we define each atom

il  in NL  from the mapping }{: iii bb =Æ lL  as a set containing a single atomic

assertion ib  from N2 .  In addition, we map the operations of logical conjunction and

disjunction to set intersection and union respectively, that is ),,(),,( 33 »«Æ⁄Ÿ L2 .

Figure 4 shows 3L  generated from 32 .  As we can define a one-to-one and onto
mapping (an isomorphism) from 32  to 3L , the lattices 3L  and 32  are said to be
isomorphic, which I shall write as 33 2=L .  The Boolean nature of the lattice 3L  can
be related to a base-2 number system by visualizing each element in the lattice as
being labeled with a set of three numbers, each either a one or zero, denoting whether
the set contains (1) or does not contain (0) each of the three atoms. },,{ cba

FIGURE 4.  The lattice 3L  was generated from 32  by defining each atom as a set containing a single

atomic assertion from 32 , and by replacing the operations of logical conjunction and disjunction with
set intersection and union, respectively as in ),,(),,( 33 »«Æ⁄Ÿ L2 .  Note that in this lattice

},,{ cbaI =  and }{∅=O  (a set containing the empty set).  As there is a one-to-one and onto
mapping of this lattice to the lattice in Fig.3 (right), they are isomorphic.

I

a b

O

c

ba ⁄ cb ⁄ca ⁄

a b

O

I

O

I

},{ ba },{ cb},{ ca

}{a }{b }{c

O

},,{ cba



Inductive Inference guided by Lattices

Inductive inference derives from deductive inference as a generalization of Boolean
implication to a relative degree of implication.  In the lattice formalism that this is
equivalent to a generalization from inclusion as defined by the binary ordering relation
of the poset to a relative degree of inclusion.  The degree of implication can be
represented as a real number denoted ( )yx Æ  defined within a closed interval (Cox
1946, 1961).  Contrast this notation with yx Æ , which represents yx £ , “x  is

included in y”.  For convenience we choose ( ) ]1,0[ŒÆ yx , where ( ) 1=Æ yx
represents the maximal degree of implication with xyx =Ÿ , which is equivalent to

yx Æ , and ( ) 0=Æ yx  represents the minimal degree of implication, which is
equivalent to Oyx =Ÿ .  Intermediate values of degree of implication arise from cases
where zyx =Ÿ  with xz ≠  and Oz ≠ .  Thus relative degree of implication is a
measure relating arbitrary pairs of assertions in the lattice.  As the binary ordering
relation of the poset is all that is needed to define the lattice, there does not exist
sufficient structure to define such a measure.  Thus we should expect some form of
indeterminacy that will require us to impose additional structure on the space.  This
manifests itself by the fact that the prior probabilities must be externally defined.

Cox derived relations that the relative degree of implication should follow in order
to be consistent with the rules of Boolean logic, i.e. the structure of the Boolean
lattice.  I will briefly mention the origin of these relations; the original work can be
found in (Cox 1946, 1961, 1979) with a slightly more detailed summary than the one
to follow by Knuth (2002).  From the associativity of the conjunction of assertions,

))(())(( dcbadcba ŸŸÆ=ŸŸÆ , Cox derived a functional equation, which has as a
general solution

rrr cbabacba )()()( ÆŸÆ=ŸÆ , (1)

where r is an arbitrary constant.  The special relationship between an assertion and its
complement results in a relationship between the degree to which a premise a  implies
b  and the degree to which a  implies b~

Cbaba rr =Æ+Æ )~()( , (2)

where r is the same arbitrary constant in (1) and C as another arbitrary constant.
Setting 1== Cr  and changing notation so that )()|( baabp Æ≡  one sees that (1)
and (2) are analogous to the familiar product and sum rules of probability.

)|()|()|( bacpabpacbp Ÿ=Ÿ (3)

1)|~()|( =+ abpabp (4)
Furthermore, commutativity of the conjunction leads to Bayes’ Theorem

)|(

)|(
)|()|(

acp

bacp
abpcabp

Ÿ
=Ÿ (5)

These three equations (3)-(5) form the foundation of inductive inference.



THE LOGIC OF QUESTIONS

“It is not the answer that enlightens, but the question.”
-Eugene Ionesco (1912-1994)

“To be, or not to be: that is the question.”
-William Shakespeare, Hamlet, Act 3 scene 1, (1579)

Defining a Question

Richard Cox (1979) defines a system of assertions as a set of assertions, which
includes every assertion implying any assertion of the set.  The irreducible set is a
subset of the system, which contains every assertion that implies no assertion other
than itself.  Finally, a defining set of a system is a subset of the system, which includes
the irreducible set.  As an example, consider the lattice 32  in Figure 3 right.  To
generate a system of assertions, we will start with the simple set },{ ba .  The system
must also contain all the assertions in the lattice which imply both assertion a and
assertion b.  These are all the assertions that can be reached by climbing down the
lattice from these two elements.  In this case, the lattice is rather small and the only
assertion that implies the assertions in this set is O, the absurdity.  Thus },,{ Oba  is a
system of assertions.  The irreducible set is simply the set },{ ba .  Last, there are two
defining sets for this system: },,{ Oba  and },{ ba .  Note that in general there are many
defining sets.  Given a defining set, one can reduce it to the irreducible set by
removing assertions that are implied by another assertion in the defining set, or expand
it by including implicants of assertions in the defining set, to the point of including the
entire system.

Cox defines a question as the system of assertions that answer that question.  Why
the system of assertions?  The reason is that any assertion that implies another
assertion that answers a question is itself an answer to the same question.  Thus the
system of assertions represents an exhaustive set of possible answers to a given
question.  Two questions are then equivalent if they are answered by the same system
of assertions.  This can be easily demonstrated with the questions “Is it raining?” and
“Is it not raining?”  Both questions are answered by the statements “It is raining!” and
“It is not raining!”, and thus they are equivalent in the sense that they ask the same
thing.  Furthermore, one can now impose an ordering relation on questions, as some
questions may include other questions in the sense that one system of assertions
contains another system of assertions as a subset.

Consider the following question:  T = “Who stole the tarts made by the Queen of
Hearts all on a summer day?”  This question can be written as a set of all possible
statements that answer it.  Here I contrive a simple defining set for T, which I claim is
an exhaustive, irreducible set

≡T { "" s!e the tartAlice stola = , "" tarts!stole the of Hearts The Knave k = ,
    "" ! the tartstter stoleThe Mad Ham = , "" ts!le the tarRabbit stoThe White w = }.



This is a fun example as it is not clear from the story1 that the tarts were even stolen.
In the event that no one stole the tarts, the question is answered by no true statement
and is called a vain question (Cox 1979).  If there exists a true statement that answers
the question, that question is called a real question.  For the sake of this example, we
assume that the question T is real, and consider an alternate question A = “Did or did
not Alice steal the tarts?”  A defining set for this question is

A ≡  { "" s!e the tartAlice stola = , ""~ the tarts!not steal Alice did a = }.

As the defining set of T  is exhaustive, the statement a~  above, which is the
complement of a , is equivalent to the disjunction of all the statements in the
irreducible set of T except for a , that is wmka ⁄⁄=~ .  As the question A is a
system of assertions, which includes all the assertions that imply any assertion in its
defining set, the system of assertions A must also contain k, m and w as each implies

a~ .  Thus system of assertions T is a subset of the system of assertions A, and so by
answering T, one will have answered A.  Of course, the converse is not generally true.
In the past has been said (Knuth 2001) that the question A includes the question T, but
it may be more obvious to see that the question T answers the question A.  As I will
demonstrate, identifying the conjunction of questions with the meet and the
disjunction of questions with the join is consistent with the ordering relation “is a
subset of”.  This however is dual to the ordering relation intuitively adopted by Cox,
“includes as a subset”, which alone is the source of the interchange between
conjunction and disjunction in identifying relations among assertions with relations
among questions in Cox’s formalism.

With the ordering relation "is a subset of" the meet or conjunction of two questions,
called the joint question, can be shown to be the intersection of the sets of assertions
answering each question.

BABA «≡Ÿ . (6)

It should be noted that Cox’s treatment dealt with the case where there the system was
not built on an exhaustive set of mutually exclusive atomic assertions.  This leads to a
more general definition of the joint question (Cox 1979), which reduces to set
intersection in the case of an exhaustive set of mutually exclusive atomic assertions.
Similarly, the join or disjunction of two questions, called the common question, is
defined as the question that the two questions ask in common.  It can be shown to be
the union of the sets of assertions answering each question

BABA »≡⁄ . (7)

According to the definitions laid out in the section on posets, the consistency relation
states that B includes A, written BA £  (or BA Æ ) if ABA =Ÿ  and BBA =⁄ .
This is entirely consistent where the ordering relation is "is a subset of", and is dual to
the convention chosen by Cox2 where AB ∂Æ  is equated with BA £  and thus
consistent with ABA =Ÿ  and BBA =⁄ .  As the relation "is a subset of" is more

                                                  
1 Chapters XI and XII of Alice's Adventures in Wonderland, Lewis Carroll, 1865.
2 Highlighting the arrow with a ∂ , indicates that it is the dual relation, which will be read conveniently as "B includes A".



conventional, I will deviate here from Cox’s convention and say that "A answers B" or
"B includes A", written BA £  (or BA Æ ) when ABA =Ÿ  and BBA =⁄ .
Although the way in which this relation is expressed is contrary to the handful of
previously published works on inductive logic I make this suggestion to assure that
this burgeoning field of inductive logic is notationally and conceptually consistent
with the more mature field of lattice theory on which it is undoubtedly based.
Notation aside, the concepts I have been discussing are unaltered and can be more
easily visualized by considering questions A and T above.  The questions “Who stole
the tarts made by the Queen of Hearts all on a summer day?” and “Did or did not
Alice steal the tarts?” jointly ask “Who stole the tarts made by the Queen of Hearts all
on a summer day?”  Whereas they ask, “Did or did not Alice steal the tarts?” in
common.  Therefore AT Õ , which is AT £ , written also as AT Æ , read either as "T
answers A" or "A includes T".  Dually, A includes T as a subset, written TA ⊇ , which

is TA ∂£ , written also as TA ∂Æ , and read "A includes T".
Next I construct the lattice of questions.

Ideals and Ideal Questions

An ideal is a nonvoid subset J of a lattice A with the properties (Birkhoff 1967)

I1. JxaxAxJa Œ£ŒŒ thenwhere,
I2. JbaJbJa Œ⁄ŒŒ then,

In the case that the lattice A is a lattice of assertions, property I1 above is a necessary
and sufficient condition for the set J to be a system of assertions.  Thus each ideal of a
lattice of assertions represents a unique system of assertions, or equivalently a
question.  For this reason, I call these systems of assertions which are also ideals, ideal
questions.

Given any assertion x in the lattice A, one can construct the set q(x) of all assertions
y  such that yx £ .  Thus the function )(q •  takes an assertion to a question.
Furthermore, one can show (Birkhoff 1967, Theorem 3.3) that the set of all ideals of
any lattice L ordered by set inclusion forms a lattice L̂ , and that for a finite lattice L̂  is
isomorphic to L.  This is significant, as the space of ideal questions possesses a
structure isomorphic to the space of assertions (Figure 5).  An inverse mapping can be
defined as a function )(a •  that takes an ideal question to an assertion by selecting the
greatest element from its system of assertions, so that xx =))(q(a .  By virtue of this
isomorphism, we know that any identities that hold for the lattice A shall also hold for
the lattice Q̂ .

At this point the space of assertions looks isomorphic to the space of questions.
However, recall that the ideal questions satisfy an additional property I2, which
requires that there be a single greatest element in the set.  This is not a property
required of questions in general by the definition put forward by Cox.  Thus there exist
additional questions not represented in the lattice Q̂ .  One such question is



FIGURE 5.  The lattice of assertions 3~ 2A  (left) and the lattice Q̂  (right) obtained by mapping each

element x of A to the set q(x) of all assertions xy ≥  and ordering by set inclusion.  Note that Q̂  and A

are isomorphic, written as 3ˆ 2== AQ .

represented by the defining set }~,{ aa .  If the space of assertions is again 32=A
then cba ⁄=~  and the defining set is equivalently },{ cba ⁄ .  However, by property
I2, the ideal containing the elements in the defining set must also include

cbacba ⁄⁄=⁄⁄ )( , which is not contained in the system of assertions.  Thus the

system }~,{ aa  is not an ideal question and is not represented in the lattice Q̂ .
I now examine the full space of questions in greater detail.  As the assertion

lattices are N2 , I shall also denote the question lattices according to the cardinality of
the atomic assertions N  by )(NQ , and the lattice of ideal questions shall be denoted

as NN 2Q =)(ˆ .  If a system of assertions defining a question contains an assertion a,
then the system must contain all the elements of the ideal of a, which we have denoted

)(q a .  Thus any question in the lattice )(NQ  can be constructed from a finite set

union of ideal questions from the lattice )(ˆ NQ .  This finite set union can be
constructed by using a vector of Boolean values denoting whether or not each of the

N2  ideal questions is included in a particular union.  The resulting lattice NQ  is thus

the power set of )(ˆ NQ  and can be thus written as 
N

NN 22QQ ==℘ ))(()( , which is
known as the free distributive lattice )(NFD  (Birkhoff, 1967; Davey & Priestley,
2002).  The lattices )1(Q , )2(Q , and )3(Q  are shown in Figure 6, with notation where

)(aqA ≡ , )( baqAB ⁄≡ , )( cbaqABC ⁄⁄≡ , and BCA »  is the set union of the
sets A and BC.  Recall that the natural ordering relation Õ  of the sets is used.

The number of possible questions grows rapidly with the number of atomic
assertions for 1=N  through 7: 2, 5, 19, 167, ,8057 353,8287 997,0406824142

78790755768722843713056  (Sloane A014466, Davey & Priestly 2002).  The
numbers are known as Dedekind’s numbers and their determination is known as
Dedekind’s problem (Dedekind 1897).  This is related to the number of monotonic

)(q cba ⁄⁄

)(q ba ⁄ )(q ca ⁄ )(q cb ⁄

)(q a )(q b )(q c

)(q O

a b

O

c

ba ⁄ cb ⁄ca ⁄

cba ⁄⁄



increasing Boolean functions of N  variables and to the number of antichains (also
called Sperner systems) on the N-set. (Comtet 1974, p. 271-273).  The lattice

)3((3) FDQ =  with I added, (Figure 6, right) is better visualized in three dimensions,
and is nicely displayed as an example (FD3) in Ralph Freese’s java-based Lattice
Drawing Program (Freese) available online.

FIGURE 6.  The question lattices (1)Q  (left), (2)Q  (center), and (3)Q  (right).  These lattices are the

free distributive lattices with 1, 2, and 3 generators respectively.  Note that )(aqA ≡ , )( baqAB ⁄≡ ,

)( cbaqABC ⁄⁄≡ , and BCA »  is the set union of the system of assertions for questions A and BC.

Real Questions

Thus far in these examinations one important point has been neglected; I have not
stipulated that the assertions defining a question be exhaustive.  That is, there is no
assurance that all of the questions in the lattice )(NQ  are real questions answerable

by a true assertion.  As the atoms of the lattice of assertions N2  are an exhaustive set,
then only questions containing the set of atoms as a subset are assured to be real
questions.  There of course may be questions that do not contain this entire set, that for
a given situation may be answerable by a true assertion, but this in general is not
guaranteed a priori.  The least element that contains the set of atoms as a subset is
given by )(1 i

N
i aqR =^ = V , where ),()()()( 211 Ni

N
i aqaqaqaq ⁄⁄⁄== KV  which is the

disjunction of all the ideals formed from the N atomic assertions.  This is A , BA » ,
CBA »»  for lattices )1(Q , )2(Q , and )3(Q  respectively.  Thus all the lattice

elements that are greater than this question ^R  are all assured to be real questions that
can be answered by every atomic assertion in the exhaustive set.  These elements are

O

CA»BA» CB »

BA C

AB AC BC

BCA»ABC » ACB »

ACAB » ABBC » BCAC »

BCACAB »»

ABC

CBA »»

)3(Q

O

A B

AB

BA»

)2(Q

O

A

)1(Q



bounded above by the question at the top of the lattice, I, which I will instead denote
as )( 1 i

N
i aqR == VT , where Ni

N
i aaaa ⁄⁄⁄== K211V .  It can be easily shown (Knuth,

in preparation) that these assuredly real questions bounded by ^R  and TR  form a
sublattice R(N) where all joins and meets of elements of R(N)  are also elements of
R(N).

Looking at the lattices in Figure 6, it appears in each case that the sublattice R(N)
(excluding TR ) is Boolean (compare to the lattice structures in Figure 3).  However,
this pattern does not hold in general and in fact fails for )4(Q .  This can be
demonstrated by looking at what are called the join-irreducible elements of R(N).  In
short these are the elements of a lattice that cannot be written as a join of elements of
the lattice, excluding O.  In any finite Boolean lattice, the join-irreducible elements are
its atoms (see 32  in Figure 3).  The poset formed by these atoms alone consists only of
these elements side-by-side, and is called an antichain (Figure 7a).  Thus the join-
irreducible elements of a Boolean lattice form an antichain, written symbolically as

N2 =)( NJ .  A proof that R(N) is not Boolean will be published in Knuth (in
preparation) and it relies on the observation that the join-irreducible elements of R(N)
are of the form )()( 11 ji b

N
Mjb

M
i aqaq +== ⁄ VV  where ak represents the kth atom of N2

from which R(N) is formed and b is some permutation of the set of natural numbers
from 1 to N , and NM <£1 . In (3)R  there are three join-irreducible elements

},,{ ABCACBBCA »»» , which form an antichain and hence (3)R  (excluding

TR ) is a Boolean lattice.  In (4)R  there are a total of 10 join-irreducible elements: 4 of
},,{ ABCDBCDA »» L  and 6 of },,,{ ABDCBDCACDBA »»»»»» L .

However, these 10 elements do not form an antichain since BCDACDBA »£»» ,
and so on.  Figure 7 shows the forms of ))4(()),3(( RR JJ and )).5((RJ  The fact that
R(N) is not in general a Boolean lattice has a very important implication - its elements
are not complemented.  Therefore, real questions, like questions in general, do not
possess complements.

FIGURE 7.  The join-irreducible elements of the sublattice of real questions (excluding RT), (a.)

3R =))3((J  is an antichain, thus R(3) excluding RT is a Boolean lattice, whereas (b.) ))4((RJ , (c.)

))5((RJ are not antichains indicating that R(4), R(5) and in general R(N) are not Boolean lattices.

Drawing these structures in a tidy way is quite a challenge.  Note that I have not labeled the elements
(described in the text for R(3) and R(4)) and that their ordering in the diagram is not necessarily the
order of the listing the text.



Inductive Inquiry on Lattices

As briefly described earlier, the sum rule of probability (2) derives from the fact that
Boolean lattices are uniquely complemented.  In Cox's earlier work, he described how
there could be no complete analog in the algebra of systems (questions) to the
complement in the algebra of assertions (Cox 1961, pp. 52-3).  In a footnote Cox
describes how Boole (1854) applied his algebra to classes of objects in addition to
propositions (see Figure 1).  He notes that one might be inclined to think of a system
as a class as defined by Boole, however the set of assertions not included in a system,
while forming a class, do not itself form a system.  This implies that the algebra of
systems cannot possibly be Boolean.

In Cox' paper on inquiry (1979) he defines a mutually contradictory pair of
questions "as a pair whose conjunction is equal to the conjunction of all questions, and
whose disjunction is equal to the disjunction of all questions."  This definition is
acceptable as long as one keeps in mind that he is working with the ordering relation
dual to convention.  However, he does not prove their existence.  While my discussion
on join-irreducible elements may be convincing to a mathematician familiar with the
theory, those less-familiar may require more tangible evidence.  Consider the question

BA »  in the lattice Q(3), (Figure 6c).  Its hypothetical complement must satisfy two
relations IBABA =»⁄» )(~)(  and OBABA =»Ÿ» )(~)( .  Consider the first
relation IBABA =»⁄» )(~)( .  If its complement )()(~ CBABA »»>»  then

)()()(~ BACBABA »>»»>» , which by the consistency relation gives
)(~)()(~ BABABA »=»⁄» .  This implies that its complement is the truism,

which is a contradiction.  As )()( BACBA »>»» , )( CBA »»  cannot be its
complement, so its complement must satisfy )(~)( BACBA »>»» .  However
s ince  )()( BACBA »>»»  a n d  )(~)( BACBA »>»»  t h e n

)()()(~ CBABABA »»=»⁄» , which is again a contradiction.
Last, distributive lattices share the associative and commutative properties of the

Boolean lattice.  For this reason, one can fully expect that generalizations of the binary
ordering relation to measures of degree of inclusion will result in a calculus possessing
a product rule as well as a rule analogous to Bayes' Theorem.

RELEVANCE AND PROBABILITY

There is a deep relationship between the Boolean lattice and the free distributive
lattice generated from it.  Looking at the lattices )1(Q , )2(Q , and )3(Q  one can see
that the join-irreducible elements are precisely the ideal questions, which have a lattice
structure isomorphic to the original Boolean lattice from which the questions were
generated.  This is the map )(QJQ a , whereas the process of generating the question
lattice is a map from the Boolean lattice of assertions to the question lattice

)(AOA a .  We thus have an isomorphic correspondence between the lattice
structures where )(AOQ =  and )(QJA = .  This is true in general for all finite
distributive lattices Q and all finite ordered sets A  and is known as Birkhoff's



Representation Theorem (Davey & Priestley 2002).  The lattice Q is called the dual of
J(A) and A is called the dual of O(Q), however this duality should not be confused
with the duality induced by the ordering relation discussed earlier.  Furthermore, it can
be shown that the join-irreducible map takes products of lattices to sums of lattices, so
that one can think of )(QJQ a  and )(AOA a  as being the logarithm and
exponential functions, respectively, for lattices (Davey & Priestley 2002).  This is
quite enticing in that it further supports our expectations that the relevance of a
question on an issue can be represented in terms of the logarithm of the probabilities
of the assertions involved, and that entropy may still play the same role with
distributive lattices as probability does with Boolean lattices.

THE ROLE OF ORDER

The lattice structure of the space of assertions and the space of questions has provided
great insights into their structures, symmetries, and relationships.  In addition, the
associative and commutative properties of lattices suggest that analogies to the
familiar product rule of probability and Bayes' Theorem may appear in the calculi of
other fields where ordering relations play an important role.  This in fact may have
already been recognized with the realization that the cross-ratio in projective geometry
has the same form as the odds ratio from Bayes' Theorem (Rodríguez 1991).
Considering the findings in this paper, such a relationship may no longer be such a
mystery as the notion of closeness in a projective space provides such an ordering
relation.  In fact, we might now not be surprised to see forms identical to probability
and perhaps entropy appearing in seemingly unrelated fields.  In such cases, it is not
geometry that underlies these theories - but order.

“The important thing is not to stop questioning.”
-Albert Einstein (1879-1955)
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